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AbstraeL We introduce represenlalions of the braid p u p  B,-1 in the ring 
Mat(Z[B,],n - 1) of matrices whose elements belong la the ring Z[B,]  of the braid 
group 8,. Iteration of this representation provides the tool for finding the braiding and 
moncdromy matrices associated to multiple line integrals of holomorphic functions. We 
mnsider applications in twodimensional conformal ficld theoy. 

In this letter we are going to compute the action of the braid group onto multiple 
line integrals of a broad class of holomorphic functions [l]. Compared with related 
work [2-51 on this problem we consider it as a simplification because we are able 
to develop the h-amework in a simpler algebraic setting. Of course due to its origin 
all the presented algebra has a geometrical interpretation which, however, will he 
presented elsewhere [6]. 

In the following for any n E N, B ,  will denote the permuting braid group 
generated by the set { T ~ ,  1 < i < n - I), with relations 

(1) T . T .  = ~ . r .  I i - j I> 2 T ~ T ~ + ~ T ~  = T ~ + , T ~ T ; + ~ .  : J  1 '  

For later convenience we abbreviate 

i < j  

j = i  

Let us now consider two sets {zi, 1 < i < n - 1) and { w j ,  1 < j < n - 2) and out 
of them construct in a formal way modules Xi1) and Wjl), respectively. Xi1) as an 
(additive) Abelian group is the group of formal finite linear combinations of the form 

Q j X j P j  

; 
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where the left mefficients oj belong to the ring Z[B,] but the right coefficients are 
taken from Z[B,-,]. (We recall that the ring Z[B,] is defined by the formal sums 
EmCB. n, .a, with only finitely many non-vanishing integers n, E Z and the product 
between such elements is the induced one coming from B, extended by Z-linearity.) 
The group Xi') of formal linear combinations thus defined is given the structure of a 
left module over Z[B,] and at the same time that of a right module over Z[B,-,] 
by the left and right action 

respectively. The construction of the module Wf) proceeds in a similar way by 
considering the linear combinations akwkPk with free generators w k  instead 
of xj. 

The relations 

k 

with matrices B ( i )  E Mat(Z[B,] , (n-  1)) and R ( i )  E Mat(Z[B,] , (n-Z))  given 
by 

( B ( i ) : )  = 1 ( i - I + ' )  ' Ti+l €3 (;:, pd) + - Z - i , n - z - i )  . T i t 1  (8) 

with the restrictions 

l < i < n - 2  1 < j , k <  n -  1 1 < 1 , m < n - 2  (10) 

and abbreviations 

ai = ritl(1- dl,i+191,itzd;j+,) Pi = r i t l ' 1 , i t l  (11) 

can now be consistently imposed on the modules. We call the resulting quotients 
X(') and W(I),  respectively. Consistency follows from the fact that, as one can easily 
check by computation, the matrices E( z )  and R( i )  constitute matrix representations 
of Artin's braid group Bn-l. This means 
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besides the existence of the inverse matrices 

with ai = 19;:+~, PI = 1 9 ~ ~ + z ( f f l , i + ,  - l),  whereas the inverse of R(i )  is simply 
obtained by the braid group automorphism T' H 77'. 

One shouid notice that the matrices B( i) are @raid-ring-vaiueaj generaiizations 
of the Burau representation of the braid group, whereas the matrices R(i) correspond 
to the reduced Burau representation [7]. We claim that these matrices yield a faithful 
representation of the braid group, since they are intimately connected with Artin's 
theorem on faithful braid representations in automorphism groups of free groups [7l. 
This, however, will be discussed elsewhere [6]. 

We now mme to the crucial point of our mnsiderations. In a similar way to 
the construction of X t )  (and W$)) it is possible to construct further modules 
X" ,.... X p - ' )  (similarly for WJ')) by taking (for tixed index 1, 1 < 1 < n - 1) the 
set of formal additively linear products 

alziraZ"i2 . . . a I x i t Q i + l  (15) 

with a, E Z[B,+,-,] and 1 < i, < n - k and then turning this set into the freely 
generated left module over ZIB,] and right module over Z[B,-,]. Again we impose 
the relations (7) and (6) onto the free modules Xh'), WJl), which now can be used 
iteratively. This is exemplified by writing 

The matrices B( ' ) ( i )  carrying multiple indices are obtained from those introduced 
before simply by replacing the generators T, ,  which occur in the matrix elements by 
the corresponding representation matrices B ( i )  and iterating this procedure until 
enough indices are obtained. It should be clear that for 2 6 1 < n - 1 the matrices 
B( ' ) ( i )  again constitute representations of the braid groups Bn-, (B, is the trivial 
group with one element), just because the replacements T, c B ( i )  respect the 
properties of the generators 7,. We set X = e;=;'X(') and W = $;=;'W(') and call 
the so-obtained graded Z[B,] left modules (in which the submodules of grade 1 are 
also right ZIB,-I] modules) the unreduced and reduced Artin modules, respectively. 

Without proof (which can be filled in by the reader, again by mere computation) 
we note that further relations can be imposed on X and W .  For example the 
relations 

w l w )  = w J + l w *  for i 4 j (19) 

are consistent in the reduced Artin module W .  Consistency here means that the 
submodule in W(2)  spanned by the elements w,w,  - wJ+,w,  for i < j is invariant 
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under the right action of Z[B,-,]  and thus can be set to zero. In X it is possible 
to impose 

i - l  

We wrote down the former relations just because they hold in the realization of 
the Artin modules which we are now going to introduce. Let 

M : = { ( z l ,  ..., zn) if i < j  then I z i l > l z j  I - i a < a r g ( z , ) < i n )  

(22) 

be the simply connected subset of C" obtained by ordering the variables zk with 
respect to their absolute value and cutting the complex planes in which they take their 
values along the negative real axis. Let { f,, j E J )  be a family of complex functions 
each member of which is holomorphic in M,>. Thus singularities can only occur if two 
variables approach each other zi - z j .  These functions can be continued analytically 
to the universal covering of the space M,, = { ( z , , . .  . , z,,), if i # j then zi # z j ) .  
If we choose a point P E M,> (e.g. P = (1 ,1 /2 , .  . . , l / n ) )  and denote by y some 
path in M ,  starting at y(0) = P and ending at y(1) = z E M,,, then the expression 
fj( z ,y )  denotes the uniquely defined analytic continuation of the complex function 
fj from (a neighborhood of) the point P E M,> to the point z E M ,  along the path 
y. The result only depends on the homotopy class of the path due to the monodromy 
theorem. 

We now introduce a representation of the braid group B, in terms of linear 
operators Pi acting on the functions f,: for every z E M,' we set 

( + i f j ) ( f )  = f j ( Z > - / i ( Z ) )  (23) 

for a path yi( z )  in M ,  running from P to by first interchanging the neighbouring 
components Pi and Pi+, in mathematically positive orientation and then connecting 
the resulting point with the point ( zI,  . . . , zi-,, zi ,  zi+,, . . . , z, ) = t i (z )  on a 
path lying completely in the set l iM,> .  The symbol t i  denotes the transposition which 
exchanges the ith and ( i  + 1)th components of a tupel. In this way the path y i ( z )  
is determined up to homotopy equivalence. Products of generators ri act according 
to the equation 

( T i r j K f k ) ( z )  = (+j(+,(fh)))(z)  = fk (z , r i (P )  ot i ( r j ( z ) ) )  (24) 

where y i ( P )  o ti(yj(z)) denotes the path obtained by first running through yi(P) 
and then through t i ( y j ( z ) ) .  The transposition ensures that the endpoint Of y i ( P )  
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(which is t i ( P ) )  is equal to the starting point of l i(yj(z)) .  Notice that the domain 
of all the generated functions is kept fixed to be M,>. This domain therefore is 
the image of a sheet of the Riemann surface of the functions j j ,  where the. chart 
is determined by the generators T ~ .  Thus the braid generators T ~ ,  T~:' climb up and 
down on the Riemann surface, respectively. 

Next we have to introduce linear operators corresponding to the generators zi 
and wj of X ( ' )  and W(I). For this purpose for every z = ( z l r . .  . , zn-') E M' "-1 

we let y ( z j ) ( z )  denote a path t c-t r ( z . ) ( r ) ( t )  E C -  {zl, ..., which is 
constructed as follows. If z = (1,. . . , l/(n - 1)) it starts at Re(zj) - ioo, NILS 
parallel to the imaginary axis until it comes near z j ,  circumvents z j  on a small 
(not containing points zi, i # j )  circle oriented positively and then NILS back to 
infinity, again parallel to the negative imaginary axis. For general z E M,>_, the 
path is obtained by deforming the previous one by some continuous deformation of 
(1,. . . , l / ( n  - 1)) into z which stays in M,>_,. On the other hand y ( w j ) ( z )  is a 
path starting at z j  and running to zjtl such that up to the endpoints of the path the 
tupel (zl,. . . .zj,y(wj)(z)(t),zjtl,. . . ,znW1) is lying in M,>. 

Now for every z E M,>_l we set 

We assume that the behaviour of the functions at infinity and at its singularities is 
sufficiently mild such that the integrals exist and result in functions being holomorphic 
in M,>_,. 

We now claim (postponing the proof to a later publication [6]) that among the 
operators i i ,  3 i j ,  Gk the relations (7) and (6) hold and (for suitable functions) the 
additional relations (19)-(21). In particular, by use of these relations it is possible to 
compute the representations of the braid group carried by the families {ti, . . . ti, fj, 
1 S i, S n - k l j  E J ]  of integrated functions if there is a representation on the 
unintegrated family {fj, j E 4. In the sense of [l] the relations encode the combined 
action of the braid group onto the homology of M ,  and onto the functions f,. 

These points have been worked out in more detail in [6,8], so here we will 
proceed by giving two simple examples. 

Erample 1. Let 

f a ( ? ,  ..., 2 " )  = n ( Z i - Z j ) a ' . '  (27) 
i < j  

with a = ( Q ~ , ~ , Q ~ , ~ ,  .. . , Q , , - ~ , ~ )  and let N ( i , j )  = ( i  - 1) . ( n  - i/2) + j - i 
be the position of ai,,  in the tupel a. lb every generator 7; associate the canonical 
transposition ti  = ( i  Y i+l , i+l  Y i) and the permutation ri of N(n-1,n)-tupels 
acting as 

r ia  = (Qt,l,ti2,....Qi,i+1,".rQt,("-l),tin)' (28) 
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Then the C-linear hull of the f b ?  where b is created from a by the described 
permutations, is invariant under the braid group 

(29) 
) = (Fifb)(zl , . . .>  n "'+' ' fn.b(zl,. . . 9 2,) 

Le. B, is linearly represented on this vector space by the matrices (eir'%+I. 6b,rjn)o,b. 
If we now choose the so as to obtain a hypergeometric type function by 

integration (a i , j  Y 6i,1 . 

" 

with a = ( a l ,  . . . ,a,,), and 1 < i < n (note the change of notation of a) we obtain a 
braid group representation of B, on the vector space spanned by {$ifpa, 1 < i < n, 
p E Pn = symmetric group on n elements } in terms of very simple matrices 

2; fa c f, = M(j)f:jj.kfb (31) 
l<k<n ,bEP .a  

(32) M ( j ) f $  = B ( j ,  a)i k b  6,;, 

where & , a )  results from B ( j )  by the replacements 

Tj+l - 1 81 ,k  - exp(2rr i . ( t ja)k- i ) .  (33) 

The second map constitutes a one-dimensional representation of the monodromy 
group of f b  regarded as function in one variable. In this way we also obtain the 
Gassner representation of the coloured braid groupoid, since due to the second Artin 
relation of the uncoloured braid group the matrices obey the coloured braid relation 

&,a)& + L t j Q ) B ( j , t i + i t p )  I . ~  = B ( j  + L a ) B ( j , t ; + 1 a ) B ( j  I .~ t l , t j t , + ! a ) ,  
(34) 

For ai = a j  (all i, j )  the Gassner representation reduces to the Burau representation 
of the braid group. 

Choosing ai,, = 2. ei . e, the functions fa in (27) become the expectation 
value of a product of free vertex operators VJz) =: exp(i&(z)) in the massless 
Gaussian measure. By integrating 'screening'-vertex-operators over contours yi = 

ri+i,j+i(l - P ~ + ~ , + ) U J ,  (this transformation corresponds to an endomorphism 
of the module W(I)) one can calculate the braiding properties of chiral intertwining 
vertex operators of minimal conformal models, as done in [9] by means of a different 
strategy. 

Erample 2. Multiple two-dimensional integrals over monodromy-invariant bilinear 
forms of holomorphic and antiholomorphic functions can be converted into multiple 
line integrals, which under certain conditions factorize into holomorphic and 
antiholomorphic integrals [lo]. 
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The general formula [ll, 121 can be written in compact form with the help of the 
braid module: 

QP'" (FE) = Q i 8 j K ( z ) q ( i ) d z n  Adin  A . .  . AdE,-,+, 
i , j  D." 

(35) 

with P = PI + P2. PI contains unfactorized integrals over the boundary of D, 
whereas P2 consists of a sum of products of (anti-)halomorphic factors 

n-2 . .  n-2 

P2 = c'~' . ZU. .ti. 1 -  - d' . yi . gi (modulo Q) (36) 
i , j = U  i=o 

with bilinear forms 

Here Q denotes the bilinear form combining the (anti-) holomorphic (in M,>) 
functions Fi,Fj to functions on the plane without monodromy. D is assumed to be 
a compact region of the complex plane, containing the singularities of the Fi (which 
reside among the zj) except for m. Therefore the integral is an improper one, which 
is assumed to exist by eventually performing an analytic continuation in the exponents 
of the singularities zj. Otherwise one had to remove neighbourhoods of the zj from 
D and the boundary of D would become larger. For properly chosen functions the 
limit D -+ C can be performed such that there is no boundary left at all and the 
contribution coming from PI vanishes. An example is s, lz l " lz  - l[*lz - Il'dz A d i ,  
where a ,  b , c  > -2 and a + b +  c 4 -2. 

The generators yi introduced in example 1 can now be recognized as the ones 
diagonalizing the matrix c'*J (at the prize of introducing formal inverses (l-pf,n)-') .  
In fact all the different kinds of contours appearing in the literature on conformal 
tield theory (10,9,13] are related by module endomorphisms and can be chosen for 
convenience. 

With help of the relations of the graded module it is possible to calculate the 
normal form of P2'" where all analytic continuations are carried out before the 
integrations 161. This is the generalization of the methods of [14,11] to compute the 
perturbation series around conformal field theory models. By choosing either the 
contours zi or yj it b possible to extract either the short- or long-distance singular 
contributions of the two-dimensional integrals of the perturbation series into the 
braiding factors. 

lb conclude this letter let us remark that the presented braid module makes 
it possible to iteratively produce new braid representations from given ones and in 
particular it solves the problem of finding the braid (and monodromy) representations 
carried by line integrals of holomorphic functions. 

Furthermore the presented framework yields the tools for dealing with the 
holomorphic factorization formula for multiple two-dimensional integrals given in 
the second example. 
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Beyond these applications there exists the possibility of generating new solutions 
to the Yang-Baxter equation (81 as well as defining new algebras generalizing the 
familiar qdeformations U,(g) of semisimple Lie algebras g (151. 

We would like to thank R Flume for introducing us to conformal perturbation theory 
and W Boenkost and F 'lbppan for discussions. ML thanks the Studienstiftung des 
deutschen Volkes as well as the Stifterverband fur die deutsche Wfisenschaft for 
financial support and more. 
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